在直角坐标系中,直线的参数方程为(为参数),若以原点为极点, 轴正半轴为极轴建立极坐标系,已知圆的极坐标方程为,设是圆上任一点,连结并延长到,使.(Ⅰ)求点轨迹的直角坐标方程;(Ⅱ)若直线与点轨迹相交于两点,点的直角坐标为,求的值.
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点,. (Ⅰ)求椭圆的方程; (Ⅱ)若,且,求的值(点为坐标原点); (Ⅲ)若坐标原点到直线的距离为,求面积的最大值.
设函数. (Ⅰ)求函数的单调区间; (Ⅱ)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由. (Ⅲ)关于的方程在上恰有两个相异实根,求实数的取值范围.
如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值.
用数学归纳法证明等式:n,n
(1)求证:点M的纵坐标为定值,且直线PQ经过一定点; (2)求面积的最小值。