已知a,b,c为互不相等的非负数,求证:a2+b2+c2>(++).
设数列{an},{bn}都是等差数列,它们的前n项的和分别为Sn , Tn,若对一切n ∈ N*,都有Sn+3 = Tn.(1)若a1 ≠ b1,试分别写出一个符号条件的数列{an}和{bn};(2)若a1 + b1 = 1,数列{cn}满足:cn = 4 an + l(–1)n–12bn,且当n ∈ N*时,cn+1 ≥ cn恒成立,求实数l的最大值.
设是函数的一个极值点。(1)求与的关系式(用表示),并求的单调区间;(2)设,若存在,使得成立,求的取值范围。
已知,三棱锥P-ABC中,侧棱PC与底面成600的角,AB⊥AC,BP⊥AC,AB=4,AC=3. (1) 求证:截面ABP⊥底面ABC;(2)求三棱锥P-ABC的体积的最小值,及此时二面角A-PC-B的正切值.
中,角所对的边分别为 且(1)求角的大小(2)若向量,向量,求的值
将数字分别写在大小、形状都相同的张卡片上,将它们反扣后(数字向下),再从左到右随机的依次摆放,然后从左到右依次翻卡片:若第一次就翻出数字则停止翻卡片;否则就继续翻,若将翻出的卡片上的数字依次相加所得的和是的倍数则停止翻卡片;否则将卡片依次翻完也停止翻卡片.设翻卡片停止时所翻的次数为随机变量,求出的分布列和它的数学期望.