已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上.(1)求椭圆C的方程;(2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为,且,求证:直线过定点,并求该定点的坐标.
如图6,在平面直角坐标系中,设点,直线:,点在直线上移动,是线段与轴的交点, . (I)求动点的轨迹的方程; (II)设圆过,且圆心在曲线上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
(本小题满分14分) 如图4,四棱锥P-ABCD的底面ABCD是正方形,PD垂直于底面ABCD,已知四棱锥的正视图,如图5所示, (Ⅰ)若M是PC的中点,证明:DM⊥平面PBC; (Ⅱ)求棱锥A-BDM的体积.
(本小题满分12分) 第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会决定对礼仪小姐进行培训.已知礼仪小姐培训班的项目A与项目B成绩抽样统计表如下,抽出礼仪小姐人,成绩只有、、三种分值,设分别表示项目A与项目B成绩.例如:表中项目A成绩为分的共7+9+4=20人.已知且的概率是. (I)求; (II)若在该样本中,再按项目B的成绩分层抽样抽出名礼仪小姐,则的礼仪小姐中应抽多少人? (Ⅲ)已知,,项目B为3分的礼仪小姐中,求项目A得3分的人数比得4分人数多的概率.
(本小题满分14分)已知函数. (I)求的值; (II)求的最大值和最小正周期; (Ⅲ)若,是第二象限的角,求.
(本小题满分14分) 已知函数 (Ⅰ)请研究函数的单调性; (Ⅱ)若函数有两个零点,求实数的取值范围; (Ⅲ)若定义在区间D上的函数对于区间D上的任意两个值x1、x2总有以下不等式成立,则称函数为区间D上的“凹函数”.若函 数的最小值为,试判断函数是否为“凹函数”,并对你的判断加以证明.