某班名学生在一次百米测试中,成绩全部介于秒与秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图。(1)若成绩大于或等于秒且小于秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率。
已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4. (1)求函数f(x)的解析式;(2)设k>1,解关于x的不等式;
设是连续的偶函数,且当时是单调函数,求满足的所有之和
设函数,且在闭区间上,只有 (Ⅰ)试判断函数的奇偶性; (Ⅱ)试求方程在闭区间上的根的个数,并证明你的结论.
设函数f(x)是定义在R上的偶函数,并在区间(-∞,0)内单调递增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范围,并在该范围内求函数y=()的单调递减区间.
定义在R上的奇函数有最小正周期4,且时,。求在上的解析式