(满分10分)已知数列,,若以为系数的二次方程都有根,且满足。 (1)求数列通项公式;(2)求数列前项和.
(本小题共12分)对于数列,定义其积数是.(1)若数列的积数是,求;(2)等比数列中,的等差中项,若数列的积数满足对一切恒成立,求实数的取值范围.
(本小题共10分)选修4-5:不等式选讲已知.(1)若,求a的最大值.(2)若的最大值为M,解不等式.
(本小题共10分)选修4-4:极坐标和参数方程已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数)(1)求曲线C的直角坐标方程和直线l的普通方程;(2)设点,若直线l与曲线C交于A,B两点,且,求实数m的值.
(本小题共12分)已知函数(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.(1)求a的值及函数f(x)的单调区间;(2)证明:当时,;(3)证明:当时,.
(本小题共12分)已知焦点在轴的椭圆 的左、右焦点分别为,直线过右焦点,和椭圆交于两点,且满足,直线的斜率为 .(1)求椭圆C的标准方程;(2)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.