(满分9分)盒子中有大小形状相同的4只红球、2只黑球,每个球被摸到的机会均等,求下列事件的概率:(1)A=“任取一球,得到红球”;(2)B=“任取两球,得到同色球”;(3)C=“任取三球,至多含一黑球”。
(本小题满分14分)在数列中,(1)求的值;(2)证明:数列是等比数列,并求的通项公式;(3)求数列。
(本小题满分14分)已知圆:和圆,直线与圆相切于点;圆的圆心在射线上,圆过原点,且被直线截得的弦长为.(Ⅰ)求直线的方程;(Ⅱ)求圆的方程.
(本小题满分14分)如图,已知正三棱柱的底面边长是,是侧棱的中点,直线与侧面所成的角为.(1)求此正三棱柱的侧棱长;(2)求二面角的正切值;(3)求点到平面的距离.
(本小题满分12分)某计算机程序每运行一次都随机出现一个二进制的六位数,其中的各位数中,,(2,3,4,5)出现0的概率为,出现1的概率为,记,当该计算机程序运行一次时,求随机变量的分布列和数学期望(即均值).
(本小题满分12分)已知.(1)求的值;(2)求的值.