已知二次函数.(1)若,试判断函数零点个数(2)若对且,,证明方程必有一个实数根属于。(3)是否存在,使同时满足以下条件①当时, 函数有最小值0;;②对任意实数x,都有。若存在,求出的值,若不存在,请说明理由。
已知数列的前项和为,且对一切正整数都成立。(Ⅰ)求,的值;(Ⅱ)设,数列的前项和为,当为何值时,最大?并求出 的最大值。
设定义在上的函数满足:对任意,都有,且当时,.⑴求的值;⑵判断并证明函数的单调性;⑶如果,解不等式.
函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。(Ⅰ)求的值及函数的值域;(Ⅱ)若,且,求的值。
设平面内的向量,,,点是直线上的一个动点,且,求的坐标及的余弦值.
在△ABC中,角A,B,C所对的边长分别是a,b,c.(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;(2)若△ABC的面积S = 3,且c =,C =,求a,b的值.