(本小题满分14分)如图:在四棱锥中,底面ABCD是菱形,,平面ABCD,点M,N分别为BC,PA的中点,且(I)证明:平面AMN;(II)求三棱锥N的体积;(III)在线段PD上是否存在一点E,使得平面ACE;若存在,求出PE的长,若不存在,说明理由。
已知函数,曲线在点x=1处的切线为,若时,有极值。 (1)求的值; (2)求在上的最大值和最小值。
已知数列{an}中,a4=28,且满足=n. (1)求a1,a2,a3; (2)猜想{an}的通项公式并用数学归纳法证明.
已知曲线和相交于点A, (1)求A点坐标; (2)分别求它们在A点处的切线方程(写成直线的一般式方程); (3)求由曲线在A点处的切线及以及轴所围成的图形面积。(画出草图)
已知复数z满足(是虚数单位) (1)求z的虚部;(2)若,求.
由下列不等式:,你能得到一个怎样的一般不等式?并加以证明.