(本小题满分12分)如图,已知是抛物线上两个不同点,且,直线是线段的垂直平分线.设椭圆E的方程为.(Ⅰ)当在上移动时,求直线斜率的取值范围;(Ⅱ)已知直线与抛物线交于A、B两个不同点, 与椭圆交于P、Q两个不同点,设AB中点为,PQ中点为,若,求离心率的范围.
如图,在各棱长均为2的三棱柱ABC-ABC中,侧面AACC⊥底面ABC,∠AAC=60°. (Ⅰ)求侧棱AA与平面ABC所成角的正弦值的大小; (Ⅱ)已知点D满足,在直线AA上是否存在点P,使DP∥平面ABC?若存在,请确定点P的位置;若不存在,请说明理由.
若椭圆C1:的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆C1的顶点上. (1)求抛物线C2的方程; (2)若过M(-1,0)的直线l与抛物线C2交于E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程.
.已知椭圆C:+=1(a>b>0)的长轴长为4. (1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标; (2)若点P是椭圆C上的任意一点,过焦点的直线l与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM、kPN,当kPM·kPN=-时,求椭圆的方程.
.已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R. (Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率; (Ⅱ)当时,求函数f(x)的单调区间与极值.
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点. (1)求证:平面PDC⊥平面PAD; (2)求点B到平面PCD的距离; (3)求二面角C-AE-D的余弦值