为了了解高中新生的体能情况,某学校抽取部分高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从 左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12﹒ [来(Ⅰ)第二小组的频率是多少?样本容量是多少?(Ⅱ)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(Ⅲ)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.
某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量(单位:微克)与时间(单位:小时)之间近似满足如图所示的曲线, (1)写出第一次服药后与之间的函数关系式; (2)据进一步测定:每毫升血液中含药量不少于微克时,治疗有效.问:服药多少小时开始有治疗效果?治疗效果能持续多少小时?(精确到,参考数据:)
已知函数有最大值,求实数的值.
已知函数(其中)的图像过点,且其相邻两条对称轴之间的距离为, (1)求实数的值及的单调递增区间; (2)若,求的值域.
已知为第三象限角,, (1)化简; (2)若,求的值.
设全集,已知函数的定义域为集合,函数的值域为集合, (1)求 ; (2)若且,求实数的取值范围.