(本小题满分12分)设向量,,.(1)若,求的值;(2)设函数,求的最大值.
已知数列。(1)求的值;(2)猜想的表达式并用数学归纳法证明。
用数学归纳法证明:
当实数取何值时,复数(其中是虚数单位).(1)是实数;(2)是纯虚数;(3)等于零.
(1)求复数;(2)求的模.
(1)已知函数 f x = r x - x ` + 1 - r x > 0 ,其中 r 为有理数,且 0 < r < 1 . 求 f x 的最小值; (2)试用(1)的结果证明如下命题:设 a 1 ≥ 0 , a 2 ≥ 0 , b 1 , b 2 为正有理数. 若 b 1 + b 2 = 1 ,则 a 1 k 1 a 2 k 2 ≤ a 1 b 1 + a 2 b 2 ; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题. 注:当 α 为正有理数时,有求导公式 x α ` = α x α - 1 .