(本小题满分13分)已知数列满足,为其前项和,且.(1)求的值;(2)求证:;(3)判断数列是否为等差数列,并说明理由.
某车间为了规定工时定额,需要确定加共某零件所花费的时间,为此作了四次实验,得到的数据如下:
(1)求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?
已知函数. (1)判断该函数在区间(2,+∞)上的单调性,并给出证明; (2)求该函数在区间[3,6]上的最大值和最小值.
某市统计局就某地居民的月收入调查了10000人,他们的月收入均在内.现根据所得数据画出了该样本的频率分布直方图如下.(每个分组包括左端点,不包括右端点,如第一组表示月收入在内) (1)求某居民月收入在内的频率; (2)根据该频率分布直方图估计居民的月收入的中位数; (3)为了分析居民的月收入与年龄、职业等方面的关系,需再从这10000人中利用分层抽样的方法抽取100人作进一步分析,则应从月收入在内的居民中抽取多少人?
已知全集,集合,, (1)求,;(2)若,求的取值范围.
设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点. (Ⅰ)求椭圆E的方程; (Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。