(本小题满分14分)已知圆C过点P(1,1)且与圆M:关于直线对称(1)求圆C的方程(2)设为圆C上一个动点,求的最小值(3)过点P作两条相异直线分别与圆C相交于A、B两点,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP与AB是否平行,并请说明理由.
(本小题满分12分)在中,分别是角A,B,C的对边,且满足.(1)求角B的大小;(2)若最大边的边长为,且,求最小边长.
(本小题满分12分)已知等差数列的公差,前项和为.(1)若成等比数列,求;(2)若,求的取值范围.
(本小题满分10分)若不等式的解集是,求不等式的解集.
(本小题满分12分)已知:函数对一切实数都有成立,且.(1)求的值;(2)求的解析式;(3)已知,设:当时,不等式恒成立;:当时,是单调函数.如果满足成立的的集合记为,满足成立的的集合记为,求(为全集).
(本小题满分12分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求的概率;(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最小值.(只需写出结论)