本小题满分14分)已知平面区域D由以P(1,2)、R(3,5)、Q(-3,4)为顶点的三角形内部和边界组成(1)写出表示区域D的不等式组(2)设点(x,y)在区域D内变动,求目标函数Z=2x+y的最小值;(3)若在区域D内有无穷多个点(x,y)可使目标函数取得最小值,求m的值。
已知y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-2x. (1)求f(x)的解析式; (2)作出函数f(x)的图象,并指出其单调区间.
已知函数 (1)判断函数在区间上的单调性,并用定义证明你的结论; (2)求该函数在区间上的最大值与最小值。
已知集合A={x| }, B="{x|" } 求;
(本小题满分14分) 已知函数,且. (1)求a的值; (2)判断的奇偶性,并加以证明; (3)判断函数在[2,+)上的单调性,并加以证明.
(本小题满分12分) 已知是定义在上的偶函数,当时, (1)求 (2)求函数的解析式; (3)求时,的值域