(本小题满分10分)在正方体中,E,F分别是CD,A1D1中点(1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点P,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由
计算: (1) (2)
(本小题满分12分)已知f(x)=,x∈(0,+∞). (1)若b≥1,求证:函数f(x)在(0,1)上是减函数; (2)是否存在实数a,b,使f(x)同时满足下列两个条件: ①在(0,1)上是减函数,(1,+∞)上是增函数; ②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.
(本小题满分12分)函数f(x)=4x2-4ax+a2-2a+2,其中[0,2] (1)当时,求函数在给定区间上的最值; (2)若在给定区间上的有最小值3,求a的值.
(本小题满分12分)设函数是定义在上的奇函数,且 (1)求函数的解析式; (2)若f(x)在[0,1)上为增函数,求不等式的解集
(本小题满分12分)(1)函数f(x)是R上的偶函数,且当x>0时,函数的解析式为f(x)=-1.求当x<0时,函数的解析式. (2)若满足关系式,求.