(本小题满分14分)设数列的前n项和为,已知.(1)求数列的通项公式;(2)令.用数学归纳法证明:;(3)设数列的前n项和为,若存在整数m,使对任意且,都有成立,求m的最大值.
已知椭圆:,直线交椭圆于两点.(Ⅰ)求椭圆的焦点坐标及长轴长;(Ⅱ)求以线段为直径的圆的方程.
在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.
已知命题:“若则二次方程没有实根”.(1)写出命题的否命题;(2)判断命题的否命题的真假, 并证明你的结论.
已知抛物线,点,过的直线交抛物线于两点.(1)若,抛物线的焦点与中点的连线垂直于轴,求直线的方程; (2)设为小于零的常数,点关于轴的对称点为,求证:直线过定点
已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)记函数的最小值为,求证:.