(本小题满分12分)设棋子在正四面体ABCD的表面从一个顶点移向另外三个顶点是等可能的,现投掷骰子根据其点数决定棋子是否移动:若投出的点数是偶数,棋子移动到另一个顶点;若投出的点数是奇数,则棋子不动.若棋子的初始位置在顶点A.求:(Ⅰ)投了2次骰子,棋子才到达顶点B的概率;(Ⅱ)记投了n次骰子,棋子在顶点B的概率为.求.
(本小题满分10分) 将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为. (Ⅰ)若该硬币均匀,试求与; (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
(本小题满分10分) 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB="4AN," M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系. (Ⅰ)证明:CM⊥SN; (Ⅱ)求SN与平面CMN所成角的大小.
(选修4-4:坐标系与参数方程) (本小题满分10分) 在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为. (Ⅰ)求圆C的直角坐标方程; (Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
(选修4—2:矩阵与变换)(本小题满分10分) 求矩阵的逆矩阵.
(16分)已知函数, (其中),,设. (Ⅰ)当时,试将表示成的函数,并探究函数是否有极值; (Ⅱ)当k=4时,若对任意的,存在,使,试求实数b的取值范围.。