已数列满足条件:(*)(Ⅰ)令,求证:数列是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)令,求数列的前n项和。
设集合,.若,求实数的取值范围.
在轴同侧的两个圆:动圆和圆外切(),且动圆与轴相切,求 (1)动圆的圆心轨迹方程L; (2)若直线与曲线L有且仅有一个公共点,求之值。
已知抛物线,其焦点为F,一条过焦点F,倾斜角为的直线交抛物线于A,B两点,连接AO(O为坐标原点),交准线于点,连接BO,交准线于点,求四边形的面积.
给定圆P:及抛物线S:,过圆心作直线,此直线与上述两曲线的四个交点,自上而下顺次记为,如果线段的长按此顺序构成一个等差数列,求直线l的方程.
已知半径为1的定圆⊙P的圆心P到定直线的距离为2,Q是上一动点,⊙Q与⊙P相外切,⊙Q交于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值。求∠MAN的度数。