(本小题12分) 在△ABC中, 角A、B、C所对的边分别为a、b、c, 且tanA=, sinB=.(1)求tanC的值; (2)若△ABC最长的边为1, 求b.
将3个小球任意地放入4个玻璃杯中,杯子中球的最多个数为,求的分布列.
因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立。该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率.
(已知三个函数其中第二个函数和第三个函数中的为同一个常数,且,它们各自的最小值恰好是方程的三个根.(Ⅰ) 求证:;(Ⅱ) 设是函数的两个极值点,求的取值范围.
如图,已知直线()与抛物线:和圆:都相切,是的焦点.(Ⅰ)求与的值;(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
(已知与都是边长为2的等边三角形,且平面平面,过点作平面,且.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的大小.