若矩阵有特征向量,且它们所对应的一个特征值为(1)求矩阵及其逆矩阵;(2)求的特征值及特征向量;(3)对任意的向量,求。
已知数列{an}的前n项和为Sn,且满足an=Sn+1(n∈N*);(Ⅰ)求数列{an}的通项公式;(Ⅱ)若,cn=,且{cn}的前n项和为Tn,求使得 对n∈N*都成立的所有正整数k的值.
已知锐角中,角所对的边分别为,已知,(Ⅰ)求的值;(Ⅱ)若,,求的值.
命题函数既有极大值又有极小值;命题直线与圆有公共点.若命题“或”为真,且命题“且”为假,试求实数的取值范围.
定义函数为的阶函数.(1)求一阶函数的单调区间;(2)讨论方程的解的个数;(3)求证:.
已知函数.(1)若在区间单调递增,求的最小值;(2)若,对,使成立,求的范围.