(1)已知,求的值;(2)设复数满足,且是纯虚数,求.
在四棱锥 P - A B C D 中,侧面 P A D ⊥ 底面 A B C D ,侧棱 P A = P D = 2 ,底面 A B C D 为直角梯形,其中 B C ∥ A D , A B ⊥ A D , A D = 2 A B = A B C = 2 , O 为 A D 中点. (Ⅰ)求证: P O ⊥ 平面 A B C D ; (Ⅱ)求异面直线PB与CD所成角的余弦值; (Ⅲ)求点 A 到平面 P C D 的距离.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别为 1 5 , 1 4 , 1 3 ,且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率; (Ⅱ)"密码被破译"与"密码未被破译"的概率哪个大?说明理由.
已知向量 m = ( sin A , cos A ) , n = ( 1 , - 2 ) ,且 m · n = 0
(Ⅰ)求 tan A 的值; (Ⅱ)求函数 f ( x ) = cos 2 x + tan A sin x , ( x ∈ R ) 的值域.
若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其外接球的表面积是 .
设椭圆 C : x 2 a 2 + y 2 b 2 = 1 a > b > 0 其相应于焦点 F 2 , 0 的准线方程为 x = 4 . (Ⅰ)求椭圆 C 的方程; (Ⅱ)已知过点 F 1 = - 2 , 0 倾斜角为 θ 的直线交椭圆 C 于 A , B 两点,求证: A B = 4 2 2 - cos 2 θ ; (Ⅲ)过点 F 1 - 2 , 0 作两条互相垂直的直线分别交椭圆 C 于 A , B 和 D , E ,求 A B + D E 的最小值