(本题8分) 已知直线过点且与直线垂直,抛物线C:与直线交于A、B两点.(1)求直线的参数方程;(2)设线段AB的中点为P,求P的坐标和点M到A、B两点的距离之积.
如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.(1)求证:平面BED⊥平面SAB.(2)求直线SA与平面BED所成角的大小.
如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.求证:(1)CM∥平面PAD.(2)平面PAB⊥平面PAD.
如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E为CD上一点,且CE=3DE.(1)求证:AE⊥平面SBD.(2)M,N分别为线段SB,CD上的点,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,确定M,N的位置;若不存在,说明理由.
如图,在圆锥PO中,已知PO=,☉O的直径AB=2,C是的中点,D为AC的中点.求证:平面POD⊥平面PAC.
如图,已知直三棱柱ABC-A1B1C1中,AC⊥BC,D为AB的中点,AC=BC=BB1.求证:(1)BC1⊥AB1.(2)BC1∥平面CA1D.