如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E为CD上一点,且CE=3DE.(1)求证:AE⊥平面SBD.(2)M,N分别为线段SB,CD上的点,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,确定M,N的位置;若不存在,说明理由.
在数列中,,.(1)设,求证数列是等比数列;(2)求数列的通项公式.
函数的图像如图所示,其中,,.(1)求出A、、的值;(2)由函数经过平移变换可否得到函数的图像?若能,平移的最短距离是多少个单位?否则,说明理由.
设数列的前项和为,若对于任意的正整数都有,(1)设,求证:数列是等比数列,并求出的通项公式;(2)求数列的前项和。
在中,角、、的对边分别为,且满足,、求角的大小;、若求的面积。
已知关于的不等式,(1)当时,解上述不等式;(2)如果关于的不等式的解集为空集,求实数的取值范围。