如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.(1)求证:平面BED⊥平面SAB.(2)求直线SA与平面BED所成角的大小.
如图,是的切线,过圆心, 为的直径,与相交于、两点,连结、. (1) 求证:; (2) 求证:.
已知函数. (1) 当时,求函数的单调区间; (2) 当时,函数图象上的点都在所表示的平面区域内,求实数的取值范围. (3) 求证:,(其中,是自然对数的底).
已知、是椭圆的左、右焦点,且离心率,点为椭圆上的一个动点,的内切圆面积的最大值为. (1) 求椭圆的方程; (2) 若是椭圆上不重合的四个点,满足向量与共线,与共 线,且,求的取值范围.
如图,平面四边形的4个顶点都在球的表面上,为球的直径,为球面上一点,且平面,,点为的中点. (1) 证明:平面平面; (2) 求平面与平面所成锐二面角的余弦值.
为了研究玉米品种对产量的影响,某农科院对一块试验田种植的一批玉米共10000株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:
(1) 现采用分层抽样的方法,从这个样本中取出10株玉米,再从这10株玉米中随机选出3株,求选到的3株之中既有圆粒玉米又有皱粒玉米的概率; (2) 根据对玉米生长情况作出的统计,是否能在犯错误的概率不超过0.050的前提下认为玉米的圆粒与玉米的高茎有关?(下面的临界值表和公式可供参考:
,其中)