甲、乙两人在罚球线投球命中的概率分别为,且各次投球相互之间没有影响.(1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.
已知向量,其中(1)若。求函数的最小值及相应x的值;(2)若的 夹角为,且,求的值。
已知向量,,,点为直线上一动点. (Ⅰ)求; (Ⅱ)当取最小值时,求的坐标.
求:.
某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满元可以 转动如图所示的圆盘一次,其中为圆心,且标有元、元、元的三部分区域面积相 等. 假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例 如:某顾客消费了元,第一次转动获得了元,第二次获得了元,则其共获得了 元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动. ⑴若顾客甲消费了元,求他获得优惠券面额大于元的概率? ⑵若顾客乙消费了元,求他总共获得优惠券金额不低于元的概率?
(本小题满分14分) 已知向量,,函数。求: (1)的最小正周期; (2)的单调递增区间; (3)在上的最值,并求取得最值时对应的的值。