(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn= an3n,求{bn}的前n项的和Tn.
已知,x,yR. (1)若,求的最小值; (2)设,求的取值范围.
(本小题满分14分) 先解答(1),再通过结构类比解答(2): (1)求证:; (2)设R,a为非零常数,且,试问:是周期函数吗?证明你的结论.
已知R且,直线和. (1)求直线∥的充要条件; (2)当时,直线恒在x轴上方,求的取值范围.
设、分别是椭圆 的左、右焦点,. (Ⅰ)若是该椭圆上的一个动点,求的最大值和最小值; (Ⅱ)若C为椭圆上异于B一点,且,求的值; (Ⅲ)设P是该椭圆上的一个动点,求的周长的最大值.
在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD. (Ⅰ)证明AB⊥平面VAD. (Ⅱ)求面VAD与面VDB所成的二面角的余弦值.