(本题满分12分).已知三棱锥P—ABC中,PC底面ABC,AB=BC,D、F分别为 AC、PC的中点,DEAP于E。 (1)求证:AP平面BDE; (2)若AE:EP=1:2,求截面BEF分三棱锥P—ABC所成上、下两部分的体积比。
(本题8分)全集U=R,若集合,,则(结果用区间表示)(1)求; (2)若集合C=,,求的取值范围;
(本题8分,每小题各4分)(1); (2)
对于给定首项 x 0 > a 3 ( a > 0 ) ,由递推公式 x n - 1 = 1 2 ( x n + a x n ) ( n ∈ N ) 得到数列 { x n } ,对于任意的 n ∈ N ,都有 x 8 > a 3 ,用数列 { x n } 可以计算 a 3 .
(1)取 x 0 = 5 , a = 100 ,计算 x 1 , x 2 , x 3 的值(精确到0.01);归纳出 x n , x n + 1 的大小关系; (2)当 n ≥ 1 时,证明: x n - x n + 1 < 1 2 ( x n - 1 - x n ) .
(3)当 x 0 ∈ [ 5 , 10 ] 时,用数列 { x n } 计算 100 3 的近似值,要求 x n - x n + 1 < 10 - 4 ,请你估计 n ,并说明理由
定义域为 R ,且对任意实数 x 1 , x 2 都满足不等式 f ( x 1 + x 2 2 ) ≤ f ( x 1 ) + f ( x 2 ) 2 的所有函数 f ( x ) 组成的集合记为 M ,例如,函数 f ( x ) = k x + b ∈ M . (1)已知函数 f ( x ) = { x , x ≥ 0 1 2 x , x < 0 ,证明: f ( x ) ∈ M ; (2)写出一个函数 f ( x ) ,使得 f ( x ) ∉ M ,并说明理由; (3)写出一个函数 f ( x ) ∈ M ,使得数列极限 l i m n → ∞ f ( n ) n 2 = 1 , l i m n → ∞ f ( - n ) - n = 1 .
已知抛物线 F : y 2 = 4 x
(1) △ A B C 的三个顶点在抛物线 F 上,记 △ A B C 的三边 A B 、 B C 、 C A 所在的直线的斜率分别为 k A B , k B C , k C A 若A的坐标在原点,求 k A B - k B C + k C A 的值; (2)请你给出一个以 P ( 2 , 1 ) 为顶点、其余各顶点均为抛物线 F 上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由