如图,正方形 ABCD 的中心为 O ,四边形 OBEF 为矩形,平面 OBEF ⊥ 平面 ABCD , 点 G 为 A B 的中点, AB = BE = 2 .
(1)求证: EG ∥ 平面 ADF ;
(2)求二面角 O - EF - C 的正弦值;
(3)设 H为线段 AF 上的点,且 AH = 2 3 HF ,求直线 BH 和平面 CEF 所成角的正弦值.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数。己知销售价格为5元/千克时,每日可售出该商品11千克。(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大。
已知各项均为正数的数列前n项和为,首项为,且等差数列。(1)求数列的通项公式;(2)若,设,求数列的前n项和.
设函数.(1)若不等式的解集为,求的值;(2)若存在,使,求的取值范围.
已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程;(2)若是直线与圆面≤的公共点,求的取值范围.
如图,是圆的直径,是延长线上的一点,是圆的割线,过点作的垂线,交直线于点,交直线 于点,过点作圆的切线,切点为.(1)求证:四点共圆;(2)若,求的长.