(本小题满分12分)上海世博会举办时间为2010年5月1日~10月31日。福建馆以“海西”为参博核心元素,主题为“潮涌海西,魅力福建”。福建馆招募了60名志愿者,某高校有l3人入选,其中5人为中英文讲解员,8人为迎宾礼仪,它们来自该校的5所所学院(这5所学院编号为1~5号),人员分布如图所示。若从这13名入选者中随机抽取3人。(1)求这3人所在学院的编号恰好成等比数列的概率;(2)求这3人中中英文讲解员人数的分布列及数学期望。
(本小题满分14分)已知集合,集合,若,求实数的取值范围。
已知圆过点且与圆:关于直线 对称,作斜率为的直线与圆交于两点,且点在直线的左上方。(1)求圆C的方程。(2)证明:△的内切圆的圆心在定直线上。(3)若∠,求△的面积。
在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2.(1)求证:;(2)求证:∥平面; (3)求三棱锥的体积.
设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形。(1)求椭圆的离心率;(2)若过点作此正方形的外接圆的切线在轴上的一个截距为,求此椭圆方程。
已知⊙,直线 (1)求证:对,直线与⊙总有两个不同的交点.(2)求弦长的取值范围.(3)求弦长为整数的弦共有几条.