(本小题满分13分)如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1.(Ⅰ)求证:AB⊥BC;(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ.判断θ与φ的大小关系,并予以证明.
已知点P在曲线:(为参数,)上,点Q在曲线:上(1)求曲线的普通方程和曲线的直角坐标方程;(2)求点P与点Q之间距离的最小值.
自圆外一点引圆的一条切线,切点为,为的中点,过点引圆的割线交该圆于两点,且,.⑴求证: 与相似;⑵求的大小.
已知函数,其中.(Ⅰ)求的单调区间;(Ⅱ)若在上存在最大值和最小值,求的取值范围.
已知抛物线:,过点(其中为正常数)任意作一条直线交抛物线于两点,为坐标原点.(1)求的值;(2)过分别作抛物线的切线,试探求与的交点是否在定直线上,证明你的结论.
如图,在斜三棱柱中,点、分别是、的中点,平面.已知,.(Ⅰ)证明:平面;(Ⅱ)求异面直线与所成的角;(Ⅲ)求与平面所成角的正弦值.