已知数列满足:,且(1)求通项公式(2)设的前n项和为S n,问:是否存在正整数m、n,使得若存在,请求出所有的符合条件的正整数对(m,n),若不存在,请说明理由.
设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列. (Ⅰ)证明:为等比数列; (Ⅱ)设,求数列的前项和.
已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax. (Ⅰ) 当a=2时,求f (x)的极小值; (Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同, 求证:g(x)的极大值小于等于10.
解关于X的不等式:,a∈R
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点, (Ⅰ)求证:FH∥平面EDB; (Ⅱ)求证:AC⊥平面EDB; (Ⅲ)求四面体B—DEF的体积
已知是的三个内角,向量,且. (1)求角; (2)若,求