已知函数,当时,函数在x=2处取得最小值1。(1)求函数的解析式;(2)设k>0,解关于x的不等式。
如图,椭圆C:焦点在轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P. ⑴求椭圆C及抛物线C1、C2的方程; ⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(,0),求的最小值.
已知数列,满足a1=2,2an=1+anan+1,bn=an-1, bn≠0 ⑴求证数列是等差数列,并求数列的通项公式; ⑵令Tn为数列的前n项和,求证:Tn<2
已知向量,函数,且函数图象的相邻两条对称轴之间的距离为 ⑴作出函数y=-1在上的图象 ⑵在中,分别是角的对边,求的值
已知,函数(的图像连续不断) (Ⅰ)求的单调区间; (Ⅱ)当时,证明:存在,使; (Ⅲ)若存在均属于区间的,且,使,证明.
已知等比数列的各项均为正数,且. (Ⅰ)求数列的通项公式; (Ⅱ)设,求数列的前n项和. (Ⅲ)设,求数列{}的前项和.