某个实心零部件的形状是如下图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台,上部是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱.(1)证明:直线平面;(2)现需要对该零部件表面进行防腐处理.已知,,,(单位:),每平方厘米的加工处理费为元,需加工处理费多少元?
若定义在R上的函数对任意的,都有成立,且当时,。 (1)求证:为奇函数;(2)求证:是R上的增函数; (3)若,解不等式.
已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)= (1)写出年利润W(万元)关于年产量x(千件)的函数解析式; (2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)
已知定义域为R的函数是奇函数. (1)求a的值;(2)判断的单调性(不需要写出理由); (3)若对任意的,不等式恒成立,求的取值范围.
设函数 (1)若且对任意实数均有成立,求表达式; (2)在(1)的条件下,当时,是单调函数,求实数的取值范围。
已知函数在处取得极值. (Ⅰ) 求; (Ⅱ) 设函数,如果在开区间上存在极小值,求实数的取值范围.