已知函数(I)求在区间上的最大值 (II)是否存在实数使得的图象与的图象有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由。
数列的前n项和为,且,数列满足. (1)求数列的通项公式, (2)求数列的前n项和.
已知向量. (1)求函数的单调增区间; (2)已知锐角△ABC中角A,B,C的对边分别为a,b,c.其面积,求b+c的值.
已知函数的定义域为,对定义域内的任意x,满足,当时,(a为常),且是函数的一个极值点, (1)求实数a的值; (2)如果当时,不等式恒成立,求实数m的最大值; (3)求证:
已知椭圆的左、右焦点分别为,离心率为,P是椭圆上一点,且面积的最大值等于2. (1)求椭圆的方程; (2)直线y=2上是否存在点Q,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点Q的坐标;若不存在,说明理由。
交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通; T∈[4,6)轻度拥堵; T∈[6, 8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段,从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制直方图如图所示. (1)这20个路段轻度拥堵、中度拥堵的路段各有多少个? (2)从这20个路段中随机抽出的3个路段,用X表示抽取的中度拥堵的路段的个数,求X的分布列及期望.