(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分. 要测定古物的年代,常用碳的放射性同位素的衰减来测定:在动植物的体内都含有微量的,动植物死亡后,停止了新陈代谢,不再产生,且原有的含量的衰变经过5570年(的半衰期),它的残余量只有原始量的一半.若的原始含量为,则经过年后的残余量与之间满足.(1) 求实数的值;(2) 测得湖南长沙马王堆汉墓女尸中的残余量约占原始含量的76.7%,试推算马王堆古墓的年代(精确到100年).
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,. (Ⅰ)求证:平面⊥平面; (Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.
某企业招聘工作人员,设置、、三组测试项目供参考人员选择,甲、乙、丙、丁、戊五人参加招聘,其中甲、乙两人各自独立参加组测试,丙、丁两人各自独立参加组测试.已知甲、乙两人各自通过测试的概率均为,丙、丁两人各自通过测试的概率均为.戊参加组测试,组共有6道试题,戊会其中4题.戊只能且必须选择4题作答,答对3题则竞聘成功. (Ⅰ)求戊竞聘成功的概率; (Ⅱ)求参加组测试通过的人数多于参加组测试通过的人数的概率; (Ⅲ)记、组测试通过的总人数为,求的分布列和期望.
已知平面向量,,,其中,且函数的图象过点. (1)求的值; (2)将函数图象上各点的横坐标变为原来的的2倍,纵坐标不变,得到函数的图象,求函数在上的最大值和最小值.
四棱锥中,⊥底面,,,. (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积.
一个多面体的直观图、正视图、侧视图、俯视图如图所示,M、N分别为A1B、B1C1的中点. (1)求证:MN//平面ACC1A1; (2)求证:MN^平面A1BC.