(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分. 要测定古物的年代,常用碳的放射性同位素的衰减来测定:在动植物的体内都含有微量的,动植物死亡后,停止了新陈代谢,不再产生,且原有的含量的衰变经过5570年(的半衰期),它的残余量只有原始量的一半.若的原始含量为,则经过年后的残余量与之间满足.(1) 求实数的值;(2) 测得湖南长沙马王堆汉墓女尸中的残余量约占原始含量的76.7%,试推算马王堆古墓的年代(精确到100年).
C.(选修4—4:坐标系与参数方程) 若两条曲线的极坐标方程分别为与,它们相交于两点,求线段的长.
(本小题满分14分) 设数列的前项和,数列满足. (Ⅰ)若成等比数列,试求的值; (Ⅱ)是否存在,使得数列中存在某项满足成等差数列?若存在,请指出符合题意的的个数;若不存在,请说明理由.
对于定义域为的函数,若同时满足下列条件: ①在内单调递增或单调递减;②存在区间,使在上的值域为;那么把叫闭函数. (1)求闭函数符合条件②的区间; (2)判断函数,是否为闭函数?并说明理由; (3)若是闭函数,求实数的范围?
定义在区间上的函数满足:①对任意的,都有;②当时, (1)求证f (x)为奇函数;(2)试解不等式
已知定义域为的函数是奇函数. (1)求的值; (2)若对任意的,不等式恒成立,求的取值范围;