(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分. 已知两点、,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点满足.(1) 求动点所在曲线的轨迹方程;(2)(理科)过点作斜率为的直线交曲线于两点,且满足,又点关于原点O的对称点为点,试问四点是否共圆,若共圆,求出圆心坐标和半径;若不共圆,请说明理由.(文科)过点作斜率为的直线交曲线于两点,且满足(O为坐标原点),试判断点是否在曲线上,并说明理由.
已知函数,(),函数,().(1)求函数的单调区间;(2)若,,求取值范围.
已知椭圆与椭圆:共焦点,并且经过点,(1)求椭圆的标准方程;(2)在椭圆上任取两点,设所在直线与轴交于点,点为点关于轴的对称点,所在直线与轴交于点,探求是否为定值?若是,求出该定值;若不是,请说明理由.
设数列{an}满足+2n=,n∈N*,且a1=1.(1)求证数列是等比数列;(2)求数列{an}的前项和.
已知四棱柱的底面为正方形,,、分别为棱、的中点.(1)求证:直线平面;(2)已知,,取线段的中点,求二面角的余弦值.
已知直线(为参数)和圆; (1)时,证明直线与圆总相交;(2)直线被圆截得弦长最短,求此弦长并求此时的值.