(本题满分18分)本题共有3个小题,第1小题满分6分,第2小题满分6分,第3小题满分6分.已知函数.(1) 试说明函数的图像是由函数的图像经过怎样的变换得到的;(2) (理科)若函数,试判断函数的奇偶性,并用反证法证明函数的最小正周期是;(3) 求函数的单调区间和值域.
(本小题满分15分)已知, 是平面上一动点, 到直线上的射影为点,且满足 (1) 求点的轨迹的方程; (2) 过点作曲线的两条弦, 设所在直线的斜率分别为, 当变化且满足时,证明直线恒过定点,并求出该定点坐标。
(本小题满分15分)已知函数(R)的一个极值点为. (1) 求的值和的单调区间; (2)若方程的两个实根为, 函数在区间上单调,求的取值范围。
(本小题满分14分)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到DA1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2) (Ⅰ)求证:A1E⊥平面BEP; (Ⅱ)求直线A1E与平面A1BP所成角的大小。
(本小题满分14分)设数列的前项和为,已知, (1)令求证:是等比数列; (2)令,设是数列的的前项和,求满足不等式的的最小值。
(本小题满分14分) 已知函数,其中 (1)求函数在区间上的单调递增区间和值域; (2)在中,,,分别是角的对边,,且的面积,求边的值.