(本小题满分15分)已知向量,,.(1) 若点、、能构成三角形,求实数应满足的条件;(2) 若为直角三角形,且为直角,求实数的值.
(本小题满分12分) 如图,在直三棱柱中,,为的中点,且, (1)当时,求证:; (2)若为中点,当为何值时,异面直线 与所成的角的正弦值为。
(本小题满分12分)在一个盒子中放有标号分别为1、2、3的三张卡片,现从这个盒子中有放回地先后抽取两张卡片,并记它们的标号分别为,设,(1)求事件“”发生的概率;(2)求的最大值,并求事件“取得最大值”的概率。
(本小题满分12分)已知函数。(1)若方程在上有解,求的取值范围;(2)在中,分别是所对的边,当(1)中的取最大值且时,求的最小值。
已知定义在正实数集上的函数,,其中.设两曲线,有公共点,且在该点处的切线相同.(1)用表示,并求的最大值;(2)求证:().
(本小题满分12分)已知直线与双曲线交于A、B两点,(1)若以AB线段为直径的圆过坐标原点,求实数a的值。(2)是否存在这样的实数a,使A、B两点关于直线对称?说明理由.