已知抛物线 C : y 2 = 4 x 的焦点为 F ,过点 K - 1 , 0 的直线 l 与 C 相交于 A 、 B 两点,点 A 关于 x 轴的对称点为 D . (Ⅰ)证明:点 F 在直线 B D 上; (Ⅱ)设 F A ⇀ · F B ⇀ = 8 9 ,求 △ B D K 的内切圆 M 的方程 .
若直线y=kx+2与圆(x-2)2+(y-3)2=1有两个不同的交点,求k的取值范围?
方程ax2+ay2-4(a-1)x+4y=0表示圆,求实数a的取值范围,并求出其中半径最小的圆的方程.
△ABC的三个顶点坐标分别为A(-1,5),B(-2,-2),C(5,5),求其外接圆的方程.
已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)表示的图是圆. (1)求t的取值范围;(2)求其中面积最大的圆的方程;(3)若点P(3,4t2)恒在所给圆内,求t的取值范围.
已知函数:f(x)=求f(x)dx.