△ABC为一个等腰三角形形状的空地,腰AC的长为3(百米),底AB的长为4(百米).现决定在空地内筑一条笔直的小路EF(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为S1和S2.(1)若小路一端E为AC的中点,求此时小路的长度;(2)若小路的端点E、F两点分别在两腰上,求的最小值.
在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)设直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.
已知定义在R上的函数的最小值为.(1)求的值;(2)若为正实数,且,求证:.
以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点的极坐标为,直线过点且与极轴成角为,圆的极坐标方程为.(1)写出直线参数方程,并把圆的方程化为直角坐标方程;(2)设直线与曲线圆交于、两点,求的值.
如图,是⊙的直径,是弦,的平分线交⊙于点,,交的延长线于点,交于点.(1)求证:是⊙的切线;(2)若,求的值
已知函数,(为自然对数的底数)(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明: