某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:
问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?
(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线M的参数方程为(为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为(t为参数).(Ⅰ)求曲线M和N的直角坐标方程,(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.
(本小题满分10分)选修4--1:几何证明选讲如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC·BC="AD·AE;" (Ⅱ)若AF="2," CF=2,求AE的长
(本小题满分12分)已知函数f(x)=ax-l+lnx,其中a为常数.(Ⅰ)当时,若f(x)在区间(0,e)上的最大值为一4,求a的值;(Ⅱ)当时,若函数存在零点,求实数b的取值范围.
(本小题满分12分)设椭圆C:,F1,F2为左、右焦点,B为短轴端点,且S△BF1F2=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程,(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M,N,且满足?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分12分)如图,已知三棱柱ABC-A'B'C'侧棱垂直于底面,AB="AC," ∠BAC=900,点M,N分别为A'B和B'C'的中点.(Ⅰ)证明:MN//平面AA'C'C;(Ⅱ)设AB=AA',当A为何值时,CN⊥平面A'MN,试证明你的结论.