(本小题满分12分)已知函数f(x)=ax-l+lnx,其中a为常数.(Ⅰ)当时,若f(x)在区间(0,e)上的最大值为一4,求a的值;(Ⅱ)当时,若函数存在零点,求实数b的取值范围.
直线AB过抛物线x2=2py(p>0)的焦点F,并与其相交于A、B两点,Q是线段AB的中点,M是抛物线的准线与y轴的交点,O是坐标原点.(Ⅰ)求的取值范围;(Ⅱ)过A、B两点分别作此抛物线的切线,两切线相交于N点.求证:;(Ⅲ)若p是不为1的正整数,当,△ABN的面积的取值范围为[5,20]时,求该抛物线的方程.
设是满足不等式的自然数的个数,其中.(Ⅰ)求的值;(Ⅱ) 求的解析式;(Ⅲ)记,令,试比较与的大小.
如图,已知正三棱柱—的底面边长是,是侧棱的中点,直线与侧面所成的角为.(Ⅰ)求此正三棱柱的侧棱长;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.
已知:函数(是常数)是奇函数,且满足,(Ⅰ)求的值;(Ⅱ)试判断函数在区间上的单调性并说明理由;(Ⅲ)试求函数在区间上的最小值.
一种电脑屏幕保护画面,只有符号“○”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“○”和“×”之一,其中出现“○”的概率为p,出现“×”的概率为q,若第k次出现“○”,则记;出现“×”,则记,令(I)当时,记,求的分布列及数学期望;(II)当时,求的概率.