以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元,而该商品在商店的销售价格是在8元基础上按月随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元,假设某商店每月购进这种商品m件,且当月售完,请分别写出该商品的出厂价格函数、销售价格函数、盈利函数的解析式
计算: (1), (2)
(本小题满分14分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界. 已知函数; (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以3为上界的有界函数,求实数的取值范围
(本小题满分14分)已知函数f(x)=ax+(a>1). (1)判定函数f(x)在(-1,+∞)上的单调性,并给出证明; (2)证明方程f(x)=0没有负数根.
(本小题满分14分)已知函数f(x)=a2x+2ax-1(a>0,且a≠1)在区间[-1,1]上的最大值为14,求实数a的值.
(本小题满分14分) 函数f(x)的图象是如下图所示的折线段OAB,点A的坐标为(1,2),点B的坐标为(3,0). (1)求f(x)的解析式 (2)定义函数g(x)=f(x)·(x-1),求函数g(x)的最大值。