某射手每次射击击中目标的概率是,且各次射击的结果互不影响。(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。
(满分14分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中是仪器的月产量).(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)
(满分12分)已知, (1)求和;(2)若记符号,①在图中把表示“集合”的部分用阴影涂黑; ②求和.
(满分12分)不用计算器计算:(注:只要有正确的转换,都要给步骤分,不能只看结果)(1)(2)
(本题10分)在平面直角坐标系中,已知抛物线:,在此抛物线上一点N到焦点的距离是3.(1)求此抛物线的方程;(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
(本题10分)无论为任何实数,直线与双曲线恒有公共点.(1)求双曲线的离心率的取值范围;(2)若直线过双曲线的右焦点,与双曲线交于两点,并且满足,求双曲线的方程.