(满分12分)已知, (1)求和;(2)若记符号,①在图中把表示“集合”的部分用阴影涂黑; ②求和.
(本小题满分15分)已知函数(1)当a=1时,求函数在点(1,-2)处的切线方程;(2)若函数在上的图象与直线总有两个不同交点,求实数a的取值范围。
(本小题满分14分)已知各项均不相等的等差数列的前四项和为14,且恰为等比数列的前三项。(1)分别求数列的前n项和(2)记为数列的前n项和为,设,求证:
如图,三棱锥P—ABC中,平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB。(1)求证:平面PCB;(2)求二面角C—PA—B的余弦值。
已知函数的最小正周期为(1)求的单调递增区间;(2)在中,a、b、c分别是角A、B、C的对边,若的面积为,求a的值。
已知:函数.(其中e为自然对数的底数,e=2.71828…〉.(1) 当时,求函数的图象在点处的切线方程;(2) 当时,试求函数的极值;(3)若,则当时,函数的图象是否总在不等式所表示的平面区域内,请写出判断过程.