已知斜率为1的直线 l 与双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 相交于 B 、 D 两点,且 B D 的中点为 M ( 1 , 3 ) e = 2
(Ⅰ)求 C 的离心率;
(Ⅱ)设 C 的右顶点为 A ,右焦点为 F , | D F | · | B F | = 17 .证明:过 A 、 B 、 D 三点的圆与x轴相切。
如图,甲船以每小时 30 2 海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于 A 1 处时,乙船位于甲船的北偏西 105 ° 的方向 B 1 处,此时两船相距20海里.当甲船航行20分钟到达 A 2 处时,乙船航行到甲船的北偏西 120 ° 方向的 B 2 处,此时两船相距 10 2 海里,问乙船每小时航行多少海里?
如图,在直四棱柱 A B C D - A 1 B 1 C 1 D 1 中,已知 D C = D D 1 = 2 A D = 2 A B , A D ⊥ D C , A B ∥ D C . (I)设 E 是 D C 的中点,求证: D 1 E ∥ 平面 A 1 B D ; (II)求二面角 A 1 - B D - C 1 的余弦值.
设 b 和 c 分别是先后抛掷一枚骰子得到的点数,用随机变量 ξ 表示方程 x 2 + b x + c = 0 实根的个数(重根按一个计). (I)求方程 x 2 + b x + c = 0
(II) 求 ξ 的分布列和数学期望; (III)求在先后两次出现的点数中有5的条件下,方程 x 2 + b x + c = 0 有实根的概率.
设数列 { a n } 满足 a 1 + 3 a 2 + 3 2 a 3 + . . . + 3 n - 1 a n = n 3 , n ∈ N + .
(I)求数列 { a n } 的通项;   (II)设 b n = n a n 求数列 { b n } 的前 n 项和 S n .
已知函数 f ( x ) = e x - k x , x ∈ R
(Ⅰ)若 k = e ,试确定函数 f ( x ) 的单调区间; (Ⅱ)若 k > 0 ,且对于任意 x ∈ R , f ( x ) > 0 恒成立,试确定实数 k 的取值范围; (Ⅲ)设函数 F ( x ) = f ( x ) + f ( - x ) ,求证: F ( 1 ) F ( 2 ) . . . F ( n ) > ( e n + 1 + 2 ) n 2 ( n ∈ N *