已知斜率为1的直线 l 与双曲线 C : x 2 a 2 - y 2 b 2 = 1 ( a > 0 , b > 0 ) 相交于 B 、 D 两点,且 B D 的中点为 M ( 1 , 3 ) e = 2
(Ⅰ)求 C 的离心率;
(Ⅱ)设 C 的右顶点为 A ,右焦点为 F , | D F | · | B F | = 17 .证明:过 A 、 B 、 D 三点的圆与x轴相切。
甲乙两公司生产同一种新产品,经测算,对于函数,,及任意的,当甲公司投入万元作宣传时,乙公司投入的宣传费若小于万元,则乙公司有失败的危险,否则无失败的危险;当乙公司投入万元作宣传时,甲公司投入的宣传费若小于万元,则甲公司有失败的危险,否则无失败的危险. 设甲公司投入宣传费x万元,乙公司投入宣传费y万元,建立如图直角坐标系,试回答以下问题: (1)请解释; (2)甲、乙两公司在均无失败危险的情况下尽可能少地投入宣传费用,问此时各应投入多少宣传费? (3)若甲、乙分别在上述策略下,为确保无失败的危险,根据对方所投入的宣传费,按最少投入费用原则,投入自己的宣传费:若甲先投入万元,乙在上述策略下,投入最少费用;而甲根据乙的情况,调整宣传费为;同样,乙再根据甲的情况,调整宣传费为如此得当甲调整宣传费为时,乙调整宣传费为;试问是否存在,的值,若存在写出此极限值(不必证明),若不存在,说明理由.
直线过曲线上一点,斜率为,且与x轴交于点,其中 ⑴试用表示; ⑵证明:; ⑶若对恒成立,求实数a的取值范围。
已知是定义在上的奇函数,当时,。 (1)求函数的解析式; (2)求不等式的解集。
已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1. (1)若直线AP的斜率为k,且|k|∈[,],求实数m的取值范围; (2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.
已知双曲线x2-=1,双曲线存在关于直线l:y=kx+4的对称点,求实数k的取值范围.