已知函数 f x = a + 1 ln x + a x 2 + 1
(I)讨论函数 f x 的单调性; (II)设 a < - 1 .如果对任意 x 1 , x 2 ∈ 0 , + ∞ , f x 1 - f x 2 ≥ 4 x 1 - x 2 ,求 a 的取值范围。
设函数(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.
已知函数(1)讨论的奇偶性与单调性;(2)若不等式的解集为的值;(3)(文)设的反函数为,若关于的不等式R)有解,求的取值范围.(理)设的反函数为,若,解关于的不等式R).
已知曲线C:的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.(1)证明:是等比数列;(2)当对一切恒成立时,求t的取值范围;(3)记数列{an}的前n项和为Sn,当时,试比较Sn与n + 7的大小,并证明你的结论.
已知函数时,的值域为,当时,的值域为,依次类推,一般地,当时,的值域为,其中k、m为常数,且(1)若k=1,求数列的通项公式;(2)项m=2,问是否存在常数,使得数列满足若存在,求k的值;若不存在,请说明理由;(3)若,设数列的前n项和分别为Sn,Tn,求。
已知函数,其中a为常数,且 (1)若是奇函数,求a的取值集合A; (2)当a=-1时,设的反函数为,且函数的图像与 的图像关于对称,求的取值集合B。 (3)对于问题(1)(2)中的A、B,当时,不等式 恒成立,求x的取值范围。