已知曲线C:的横坐标分别为1和,且a1=5,数列{xn}满足xn+1 = tf (xn – 1) + 1(t > 0且).设区间,当时,曲线C上存在点使得xn的值与直线AAn的斜率之半相等.(1)证明:是等比数列;(2)当对一切恒成立时,求t的取值范围;(3)记数列{an}的前n项和为Sn,当时,试比较Sn与n + 7的大小,并证明你的结论.
(本小题满分14分)如图,已知四边形是正方形,平面,//,,,,分别为,,的中点. (Ⅰ)求证:平面FGH //平面; (Ⅱ)求证:平面平面; (Ⅲ)在线段上是否存在一点,使平面?若存在,求出线段的长;若不存在,请说明理由.
(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD (1)求证:SO⊥平面ABCD; (2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.
(本小题满分12分)直线l的方程为(a+1)x+y+2-a=0(a∈R). (1)若l在两坐标轴上的截距相等,求a的值; (2)若l不经过第二象限,求实数a的取值范围.
(本小题满分12分)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当直线l过圆心C时,求直线l的方程; (2)当直线l的倾斜角为45°时,求弦AB的长.
(本小题满分12分)如图所示,正方体ABCD-A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1.