设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.①求数列的通项公式(用表示)②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。 (1)求椭圆C的方程; (2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
设函数=x+ax2+blnx,曲线y =过P(1,0),且在P点处的切斜线率为2. (1)求a,b的值; (2)证明:≤2x-2.
已知等差数列和公比为的等比数列满足:,,. (1)求数列, 的通项公式; (2)求数列的前项和为.
已知函数(为常数),且在点处的切线平行于轴. (1)求实数的值; (2)求函数的单调区间.
某工厂有甲、乙两个生产小组,每个小组各有四名工人,某天该厂每位工人的生产情况如下表.
(1)用茎叶图表示两组的生产情况; (2)求乙组员工生产件数的平均数和方差; (3)分别从甲、乙两组中随机选取一名员工的生产件数,求这两名员工的生产总件数为19的概率. (注:方差,其中为x1,x2, ,xn的平均数)