设数列 { a n } 的前 n 项和为 S n .已知 a 1 = 1 , 2 S n n = a n + 1 - 1 3 n 2 - n - 2 3 , n ∈ N + . (Ⅰ) 求 a 2 的值; (Ⅱ) 求数列 { a n } 的通项公式; (Ⅲ) 证明:对一切正整数 n ,有 1 a 1 + 1 a 2 + . . . + 1 a n < 7 4 .
如图,直线过点P(2,1),夹在两已知直线和之间的线段AB恰被点P平分.(1)求直线的方程;(2)设点D(0,m),且AD//,求:ABD的面积.
已知函数(Ⅰ)当时,求函数的极大值和极小值;(Ⅱ)当时,恒成立,求的取值范围.
为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用最小,并求最小值.
已知、分别是椭圆的左、右焦点,右焦点到上顶点的距离为2,若(Ⅰ)求此椭圆的方程;(Ⅱ)直线与椭圆交于两点,若弦的中点为,求直线的方程.
数列{an}中,a1=1,当时,其前n项和满足.(Ⅰ)求Sn的表达式;(Ⅱ)设,数列{bn}的前n项和为,求.